About the WBDG - Whole Building Design Guide®  

A robust gateway to up-to-date information on integrated 'whole building' design techniques and technologies.

The WBDG is the only web-based portal providing government and industry practitioners with one-stop access to up-to-date information on a wide range of building-related guidance, criteria and technology from a 'whole buildings' perspective. Currently organized into four major categories—Design Recommendations, Project Management / Operations & Maintenance, Federal Facility Criteria and Continuing Education—at the heart of the WBDG are Resource Pages, reductive summaries on particular topics.

Development of the WBDG is a collaborative effort among federal agencies, private sector companies, non-profit organizations and educational institutions. Its success depends on industry and government experts contributing their knowledge and experience to better serve the building community.

The WBDG web site is offered as an assistance to the building community by the National Institute of Building Sciences (NIBS) through funding support from the Department of Defense, the NAVFAC Engineering Innovation and Criteria Office, the Army Corps of Engineers, the U.S. Air Force, the Department of Veterans Affairs, and the Department of Energy, the U.S. General Services Administration (GSA), the Department of Homeland Security and the Department of State Bureau of Overseas Buildings Operations (OBO). The WBDG Advisory Workgroup, consisting of representatives from over 15 participating federal agencies guide the development of the WBDG.

Whole Building Design

by Don Prowler, FAIA - Donald Prowler & Associates
Revised and updated by Stephanie Vierra, Assoc. AIA, LEED AP BD+C - Vierra Design & Education Services, LLC

The Role of Buildings and the Case for Whole Building Design

Buildings are deceptively complex. At their best, they connect us with the past and represent the greatest legacy for the future. They provide shelter, encourage productivity, embody our culture, and certainly play an important part in life on the planet. In fact, the role of buildings is constantly changing. Buildings today are life support systems, communication and data terminals, centers of education, justice, and community, and so much more. They are incredibly expensive to build and maintain and must constantly be adjusted to function effectively over their life cycle. The economics of building has become as complex as its design.

Data from the U.S. Energy Information Administration illustrates that buildings are responsible for almost half (48%) of all greenhouse gas emissions annually. Seventy-six percent of all electricity generated by U.S. power plants goes to supply the building sector1 and buildings often contribute to health problems such as asthma and allergies due to poor indoor environmental quality. Safety is also paramount in buildings with security-related expenditures one of the fastest rising expenses.

The federal government has responded to these challenges by putting into place Executive Orders and Mandates. High performance buildings were defined in the Energy Policy Act of 2005 (Public Law 109-058) as: "buildings that integrate and optimize all major high-performance building attributes, including energy efficiency, durability, life-cycle performance, and occupant productivity".

The Energy Independence and Security Act (EISA) of 2007 further established a new and aggressive plan for achieving energy independence in our nation's building stock by the year 2030. The Act requires that federal buildings (new and renovations) achieve fossil fuel-generated energy consumption reductions on the order of 55 percent in the year 2010 to 100 percent in 2030. The Act also requires that sustainable design principles be applied to siting, design, and construction. It is of note that the Act defines High-Performance Buildings as the integration and optimization on a life cycle basis all major high-performance attributes, including energy conservation, environment, safety, security, durability, accessibility, cost-benefit, productivity, sustainability, functionality, and operational considerations. These issues are synonymous with whole building design.

Other private sector programs, such as the USGBC LEED® rating system, define standards and measures for sustainable buildings. Also, the Building Security Council's (BSC) Building Rating System and certification for professionals has been created to help measure and benchmark security in buildings. The private sector and industry have also responded by creating more products and systems that have multiple benefits. The knowledge, materials, and systems exist and are readily available to make a positive impact on the environment and on the quality of life of building occupants.

Whole Building Design encompasses all of these issues and programs and is an essential way of approaching building projects. Understanding Whole Building Design concepts will enable you to think and practice in an integrated fashion to meet the demands of today's as well as tomorrow's high-performance building projects.

The Philosophy and Components of Whole Building Design

Holism-Interconnectedness-Synergy around a photo of the Earth making 'The Whole is Greater than the Sum of its Parts'

The concept of "wholes" is not new. In 1926, Jan Christian Smuts, a South African Prime Minister and philosopher, coined the term "holism". He believed that there are no individual parts in nature, only patterns and arrangements that contribute to the whole. Buckminster Fuller also said back in 1969 while working on the space program: "Synergy is the only word in our language that means behavior of whole systems, unpredicted by the separately observed behaviors of the system's parts or any subassembly of the system's parts."

Whole Building Design draws upon these concepts of synergies and interconnectedness and consists of two components: an integrated design approach and an integrated team process. The "integrated" design approach asks all the members of the building stakeholder community, and the technical planning, design, and construction team to look at the project objectives, and building materials, systems, and assemblies from many different perspectives. This approach is a deviation from the typical planning and design process of relying on the expertise of specialists who work in their respective specialties somewhat isolated from each other.

Whole Building design in practice also requires an integrated team process in which the design team and all affected stakeholders work together throughout the project phases and to evaluate the design for cost, quality-of-life, future flexibility, efficiency; overall environmental impact; productivity, creativity; and how the occupants will be enlivened. The 'Whole Buildings' process draws from the knowledge pool of all the stakeholders across the life cycle of the project, from defining the need for a building, through planning, design, construction, building occupancy, and operations.

The Integrated Design Approach

Design of the 'whole building' concept: The High-Performance Building is centered and surrounded by the Intergrated Team Process and the Integrated Design Approach; in the outer ring are the design objectives - Accessible, Aethetics, Cost-Effective, Functional/Operational, Historic Preservation, Productive, Secure/Safe and Sustainable

Each design objective is significantly important in any project, yet a truly successful one is where project goals are identified early on and held in proper balance during the design process; and where their interrelationships and interdependencies with all building systems are understood, evaluated, appropriately applied, and coordinated concurrently from the planning and programming phase. A high-performance building cannot be achieved unless the integrated design approach is employed.

Design Objectives of Whole Building Design

In buildings, to achieve a truly successful holistic project, these design objectives must be considered in concert and in balance with each other:

  • Accessible: Pertains to building elements, heights and clearances implemented to address the specific needs of disabled people.

  • Aesthetics: Pertains to the physical appearance and image of building elements and spaces as well as the integrated design process.

  • Cost-Effective: Pertains to selecting building elements on the basis of life-cycle costs (weighing options during concepts, design development, and value engineering) as well as basic cost estimating and budget control.

  • Functional/Operational: Pertains to functional programming—spatial needs and requirements, system performance as well as durability and efficient maintenance of building elements.

  • Historic Preservation: Pertains to specific actions within a historic district or affecting a historic building whereby building elements and strategies are classifiable into one of the four approaches: preservation, rehabilitation, restoration, or reconstruction.

  • Productive: Pertains to occupants' well-being—physical and psychological comfort—including building elements such as air distribution, lighting, workspaces, systems, and technology.

  • Secure/Safe: Pertains to the physical protection of occupants and assets from man-made and natural hazards.

  • Sustainable: Pertains to environmental performance of building elements and strategies.

Whole Building Design provides the strategies to achieve a true high-performance building: one that is cost-effective over its entire life cycle, safe, secure, accessible, flexible, aesthetic, productive, and sustainable.

Through a systematic analysis of these interdependencies, and leveraging whole building design strategies to achieve multiple benefits, a much more efficient and cost-effective building can be produced. For example, the choice of a mechanical system might impact the quality of the air in the building, the ease of maintenance, global climate change, operating costs, fuel choice, and whether the windows of a building are operable. In turn, the size of the mechanical system will depend on factors such as, the type of lighting and controls used, how much natural daylight is brought in, how the space is organized, the facility's operating hours, and the local microclimate. At the same time, these same materials and systems choices may have an impact on the aesthetics, accessibility, and security of the project. A successful Whole Building Design is a solution that is greater than the sum of its parts.

The Integrated Team Process

To create a successful high-performance building, an interactive approach to the design process is also required. It means all the stakeholders—everyone involved in the planning, design, use, construction, operation, and maintenance of the facility—must fully understand the issues and concerns of all the other parties and interact closely throughout all phases of the project.

Who needs to be at the table at the outset of a project to ensure an integrated team process? Each project is unique and will require the team and expertise to be matched to the goals of the project. The team may include but is not limited to: the Architect, Landscape Architect, Owner, Client, Tenants, Engineers, Programmers, Interior Designer, Contractor, Specialists (Security, Telecom, Acoustics, LEED AP), Community Members or Other Stakeholders, Operations and Maintenance Personnel, and others such as a Real Estate Buyer. (See Engage the Integrated Design Process.)

A design charrette—a focused and collaborative brainstorming session held at the beginning of a project—encourages an exchange of ideas and information and allows truly integrated design solutions to take form. Team members—all the stakeholders—are encouraged to cross fertilize and address problems beyond their field of expertise. The charrette is particularly helpful in complex situations where many people represent the interests of the client and conflicting needs and constituencies. Participants are educated about the issues and resolution enables them to "buy into" the schematic solutions. A final solution isn't necessarily produced, but important, often interdependent, issues are explored. (See Planning and Conducting Integrated Design Charrettes.)

It is not enough to design the project in a holistic manner. It is also important to determine and measure the effectiveness and outcome of the integrated design solution over the defined life cycle. Consider conducting a Facility Performance Evaluation to ensure that the high-performance goals have been met and will continue to be met over the life cycle of the project. Consider retrocommissioning to ensure that the building will continue to optimally perform through continual adjustments. (See Building Commissioning and Commissioning Document Compliance and Acceptance.)

1. [Source: www.architecture2030.org]